Synthesis of the Quaternary One-Dimensional Triple-Chain Materials $\mathrm{K}_{3} \mathrm{Cu}_{3} M_{2} \mathrm{O}_{8}\left(\boldsymbol{M}=\mathrm{Nb}, \mathrm{Ta} ; \boldsymbol{Q}=\mathbf{S}, \mathrm{Se}\right.$): The Structure of $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}$

YING-JIE LU and JAMES A. IBERS
Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113

Received September 16, 1991; in revised form December 2, 1991

Abstract

The one-dimensional triple-chain materials $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}, \mathrm{~K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{Se}_{8}, \mathrm{~K}_{3} \mathrm{Cu}_{3} \mathrm{Ta}_{2} \mathrm{Se}_{8}$, and $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Ta}_{2} \mathrm{~S}_{8}$ have been prepared by the reactive flux method in which Cu and Nb or Ta were reacted with $\mathrm{K}_{2} Q_{5}$ / $Q(Q=\mathrm{S}, \mathrm{Se})$ at $850^{\circ} \mathrm{C} . \mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}$ has been characterized by single-crystal X-ray diffraction techniques. It crystallizes with four formula units in space group $C_{2 h}^{6}-C 2 / c$ of the monoclinic system in a cell of dimensions $a=23.446(3), b=5.545(3), c=14.204(3) \bar{A}, \beta=120.87(3)^{\circ}$ at $-120^{\circ} \mathrm{C}$. It is composed of one-dimensional ${ }_{\infty}^{1}\left[\mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}^{3-}\right]$ chains isolated from one another by K^{-}cations. These chains are triple in nature, and consist of successive conner-sharing $\mathrm{CuS}_{4}-\mathrm{CuS}_{4}$ tetrahedra and edge-sharing $\mathrm{CuS}_{4}-\mathrm{NbS}_{4}$ tetrahedra. This edge-sharing results in $\mathrm{Nb}-\mathrm{Cu}$ distances of $2.772(2)-2.781(1) \AA . \mathrm{K}_{3} \mathrm{Cu}_{3}$ $\mathrm{Nb}_{2} \mathrm{Se}_{8}$ with cell dimensions $a=23.453(4), b=5.592(12), c=14.223(3) \AA, \beta=120.7(3)^{\circ}$ at $-120^{\circ} \mathrm{C}$ $\left(\lambda\left(\mathrm{CuK} \alpha_{1}\right)=1.54056 \AA\right) ; \mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Ta}_{2} \mathrm{Se}_{8}$ with cell dimensions $a=23.493(9), b=5.538(7), c=14.204(12)$ $\AA, \beta=120.5(9)^{\circ}$ at $-165^{\circ} \mathrm{C}\left(\lambda\left(\mathrm{MoK} \alpha_{1}\right)=0.70930 \AA\right)$; and $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Ta}_{2} \mathrm{~S}_{8}$ with cell dimensions $a=23.450(6)$, $b=5.541(3), c=14.110(6) \AA, \beta=120.47(3)^{\circ}$ at $-165^{\circ} \mathrm{C}\left(\lambda\left(\mathrm{Mo} K \alpha_{1}\right)=0.70930 \AA\right)$ appear to be isostructural with $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8} . \mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}$ has a resistivity greater than $10^{5} \mathrm{~m} \Omega \mathrm{~cm}$ at room temperature. © 1992 Academic Press, Inc.

Introduction

Many new quaternary $/ \mathrm{K} / \mathrm{Cu} / \mathrm{Nb}$ or $\mathrm{Ta} /$ S or $\mathrm{Se} /$ solid-state compounds, most with unusual structures, have been synthesized by use of the reactive flux method (1). These include the one-dimensional chain compounds $\mathrm{K}_{2} \mathrm{CuMSe} \mathrm{C}_{4}(M=\mathrm{Nb}$ (2), Ta (3)) and $\mathrm{K}_{3} \mathrm{CuNb}_{2} \mathrm{Se}_{12}$ (2). These structures exhibit one-dimensional mixed-metal chains formed by successive edge-sharing of tetrahedra $\left(\mathrm{K}_{2} \mathrm{CuMSe}{ }_{4}\right)$ or by alternation of facesharing and edge-sharing of mixed polyhedra and tetrahedra $\left(\mathrm{K}_{3} \mathrm{CuNb}_{2} \mathrm{Se}_{12}\right)$. With the addition of CuSe_{4} tetrahedra in a cornersharing arrangement, the two-dimensional layer compounds $\mathrm{KCu}_{2} M \mathrm{Se}_{4}$ ($M=\mathrm{Nb}$ (4),

Ta (3)) and $\mathrm{KCu}_{2} \mathrm{NbS}_{4}$ (4) are formed. The conceptual addition of corner-sharing $\mathrm{Cu} Q_{4}$ ($Q=\mathrm{S}, \mathrm{Se}$) tetrahedra to the ${ }_{\infty}^{1}\left[\mathrm{CuM} Q_{4}^{2-}\right]$ structure would produce a one-dimensional triple-chain structure. Here we report the synthesis and characterization of the $\mathrm{K}_{3} \mathrm{Cu}_{3}$ $M_{2} Q_{8}$ series, a series that exhibits this structure.

Experimental

Synthesis. $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}$ was prepared from a stoichiometric reaction of $\mathrm{K}_{2} \mathrm{~S}_{5}$ ($142.8 \mathrm{mg}, 0.6 \mathrm{mmol}$) with powders of elemental Nb ($74 \mathrm{mg}, 0.8 \mathrm{mmol}$), $\mathrm{Cu}(76 \mathrm{mg}$, $1.2 \mathrm{mmol})$, and $\mathrm{S}(6.4 \mathrm{mg}, 0.2 \mathrm{mmol})(\mathrm{Nb}$, 99.8%, AESAR; Cu, 99.5%, Alfa; K, 99%,

AESAR; S, 100.0%, Mallinckrodt). $\mathrm{K}_{2} \mathrm{~S}_{5}$ was prepared by the stoichiometric reaction of elemental K and S in liquid ammonia under an atmosphere of Ar. In a glove box the starting materials were loaded into a quartz tube that was subsequently evacuated to 10^{-4} Torr and sealed. It was then placed in a furnace that was heated to $500^{\circ} \mathrm{C}$, held there for 24 hr , then ramped to $850^{\circ} \mathrm{C}$, kept there for four days, and then cooled to $25^{\circ} \mathrm{C}$ at a rate of $4^{\circ} \mathrm{C} / \mathrm{hr}$. Yellow, plate-like single crystals extracted from the surface of the melt were suitable for X-ray diffraction analysis. Chemical analysis of three crystals selected at random was performed with the electron microprobe of an EDAX-equipped Hitachi S-570 LB scanning electron microscope; the composition found was $\mathrm{K}: \mathrm{Cu}: \mathrm{Nb}: \mathrm{S}=1.5: 1.5: 1: 4.2$, in good agreement with that of $3: 3: 2: 8$ established from the X-ray structure determination.
$\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{Se}_{8}$ was synthesized from a similar reaction of $\mathrm{K}_{2} \mathrm{Se}_{5}(284 \mathrm{mg}, 0.6 \mathrm{mmol})$ with elemental Nb ($74 \mathrm{mg}, 0.8 \mathrm{mmol}$), Cu ($76 \mathrm{mg}, 1.2 \mathrm{mmol}$), and $\mathrm{Se}(16 \mathrm{mg}, 0.2$ $\mathrm{mmol}) . \mathrm{K}_{2} \mathrm{Se}_{5}$ was prepared by the stoichiometric reaction of K with Se in liquid ammonia. The heating regime was the same as above, but the cooling rate was $2^{\circ} \mathrm{C} / \mathrm{hr}$. Deep yellow and yellow-orange crystals extracted from the surface of the melt were suitable for X-ray diffraction analysis. Chemical analysis by EDAX gave $\mathrm{K}: \mathrm{Cu}: \mathrm{Nb}: \mathrm{Se}=1.8: 1.6: 1: 4.6$.
$\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Ta}_{2} \mathrm{~S}_{8}$ was synthesized from a reaction of $\mathrm{K}_{2} \mathrm{~S}_{5}(100 \mathrm{mg}, 0.42 \mathrm{mmol})$ with elemental Ta ($101 \mathrm{mg}, 0.56 \mathrm{mmol}$), $\mathrm{Cu}(53 \mathrm{mg}$, $0.84 \mathrm{mmol})$, and $S(4.5 \mathrm{mg}, 0.14 \mathrm{mmol})$ in the same heating regime used for $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{Se}_{8}$. Bright yellow and orange plate-like crystals that formed in the tube were suitable for X-ray analysis. Chemical analysis by EDAX gave $\mathrm{K}: \mathrm{Cu}: \mathrm{Ta}: \mathrm{S}=1.4: 1.5: 1: 4.1$.
$\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Ta}_{2} \mathrm{Se}_{8}$ was synthesized from a reaction of $\mathrm{K}_{2} \mathrm{Se}_{5}$ ($284 \mathrm{mg}, 0.6 \mathrm{mmol}$) with elemental Ta ($145 \mathrm{mg}, 0.8 \mathrm{mmol}$), Cu (76
$\mathrm{mg}, 1.2 \mathrm{mmol})$, and $\mathrm{Se}(16 \mathrm{mg}, 0.2 \mathrm{mmol})$. In the same heating regime used for $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{Se}_{8}$, yellow-orange plate-like crystals formed in the tube that were suitable for X-ray analysis. Chemical analysis by EDAX gave K:Cu:Ta:Se = 1.6:1.7:1:4.4.
X-ray crystallography. Weissenberg photography indicated that $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}$ belongs to the monoclinic system and displays systematic absences consistent with the space groups $C_{s}^{4}-C c$, and $C_{2 h}^{6}-C 2 / c$. The unit cell dimensions, $a=$ 23.446(3), $b=5.545(3)$, $c=14.204(3) \AA, \beta=120.87(3)^{\circ}$ at $-120^{\circ} \mathrm{C}$, were obtained by a least-squares analysis of the setting angles of 25 reflections automatically centered in the range of $43^{\circ} \leq 2 \theta$ $\left(\mathrm{CuK} \alpha_{1}\right) \leq 46^{\circ}$ on an Enraf-Nonius CAD4 diffractometer. $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{Se}_{8}$ with cell dimensions $a=23.453(4), b=5.592(12), c=$ 14.223(3) $\AA, \beta=120.7(3)^{\circ}$ at $-120^{\circ} \mathrm{C}$ $\left(\lambda\left(\mathrm{CuK} \alpha_{1}\right)=1.54056 \AA\right) ; \mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Ta}_{2} \mathrm{Se}_{8}$ with cell dimensions $a=23.493(9), b=5.538(7)$, $c=14.204(12) \AA, \beta=120.5(9)^{\circ}$ at $-165^{\circ} \mathrm{C}$ $\left(\lambda\left(\operatorname{MoK} \alpha_{1}\right)=0.70930 \AA\right)$; and $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Ta}_{2} \mathrm{~S}_{8}$ with cell dimensions $a=23.450(6), b=$ 5.541(3), $c=14.110(6) \AA, \beta=120.47(3)^{\circ}$ at $-165^{\circ} \mathrm{C}\left(\lambda\left(\mathrm{MoK} \alpha_{1}\right)=0.70930 \AA\right)$ appear to be isostructural. Intensity data for $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}$ were collected by methods standard in this laboratory (5) with use of the $\theta-2 \theta$ technique in the range $2^{\circ} \leq$ $\theta\left(\mathrm{Cu} K \alpha_{1}\right) \leq 75^{\circ}$. Six standard reflections, chosen from diverse regions of reciprocal space and monitored every 3 hr during data collection, showed no significant change. In the solution and refinement of the structure all calculations were carried out on a Stellar GS2000 computer. The centrosymmetric space group $C_{2 h}^{6}-C 2 / c$ was chosen, since averaging $h k l$ and $h \bar{k} l$ reflections, after correction for absorption, led to a satisfactory residual of 0.069 . The structure was solved by direct methods (6). An analytical absorption correction was applied (7). The structure was refined on F_{0}^{2} by full-matrix leastsquares methods. The final anisotropic re-

TABLE I

${ }^{a}$ The low temperature system for the Nonius CAD4 diffractometer is from a design by Professor J. J. Bonnet and S. Askenazy and is commercially available from Soterem, Z. T. de Vic, 31320 Castanet-Tolosan, France.
finement of 1728 observations and 76 variables converged to values of $R\left(\mathrm{~F}_{\mathrm{o}}^{2}\right)$ of 0.152 and $R_{w}\left(F_{0}^{2}\right)$ of 0.159 . The conventional R index $R(F)$ for those 1403 reflections having $F_{\mathrm{o}}^{2}>3 \sigma\left(F_{\mathrm{o}}^{2}\right)$ is 0.069 . Some crystallographic details are given in Table I. The final positional and equivalent isotropic thermal parameters are given in Table II. Anisotropic thermal parameters and structure amplitudes are given in Table IS. ${ }^{1}$

[^0]

Fig. 1. Projection of the $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}$ structure down [010].

Results and Discussion

The crystal structure of $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}$ consists of well-separated cations and anions (Fig. 1). The anion is the new one-dimensional chain ${ }_{x}^{1}\left[\mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}^{3-}\right]$. Figure 2 shows this anionic chain with the labeling scheme. This triple-metal chain, which runs along [010], comprises successive $\mathrm{CuS}_{4}-\mathrm{NbS}_{4}$ edge-sharing tetrahedra and $\mathrm{CuS}_{4}-\mathrm{CuS}_{4}$ corner-sharing tetrahedra. It may be thought of as the addition of $\mathrm{CuQ}_{4}-\mathrm{CuQ}_{4}$ corner-sharing tetrahedra to the successive $\mathrm{CuQ}_{4}-\mathrm{NbQ}_{4}$ chains in $\mathrm{K}_{2} \mathrm{CuNbSe}_{4}$ (2). In the present structure there are two crystallographically distinct Cu atoms. The NbS_{4} and $\mathrm{Cu}(2) \mathrm{S}_{4}$ tetrahedra edge share along b, while

Fig. 2. The one-dimensional triple chain ${ }_{x}^{1}\left[\mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}^{3-}\right]$ in $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}$.
and handling charge for this service of $\$ 15$. Foreign orders add $\$ 4.50$ for postage and handling. $\$ 1.75$ for postage of any microfiche orders.

TABLE II
Positional and Equivalent Isotropic Thermal. Parameters (\AA^{2}) For $K_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}$

Atom	Wyckoff Notation	x	y	z	$B_{\text {eq }}^{a}$
$\mathrm{Nb}(1)$	$8 f$	$0.127063(29)$	$0.28240(13)$	$0.280696(47)$	$0.73(2)$
$\mathrm{Cu}(1)$	$4 e$	0	$0.27823(37)$	$\frac{1}{4}$	$1.13(5)$
$\mathrm{Cu}(2)$	$8 f$	$0.376968(65)$	$0.28201(26)$	$0.21811(10)$	$1.14(4)$
$\mathrm{K}(\mathrm{I})$	$8 f$	$0.30991(10)$	$0.03699(42)$	$0.40645(16)$	$1.76(6)$
$\mathrm{K}(2)$	$4 a$	0	0	0	$1.43(8)$
$\mathrm{S}(1)$	$8 f$	$0.092236(96)$	$0.04895(40)$	$0.37627(15)$	$0.99(6)$
$\mathrm{S}(2)$	$8 f$	$0.038720(98)$	$0.51802(39)$	$0.15839(16)$	$1.01(6)$
$\mathrm{S}(3)$	$8 f$	$0.15757(10)$	$0.03092(40)$	$0.18658(16)$	$1.11(6)$
$\mathrm{S}(4)$	$8 f$	$0.287670(99)$	$0.02891(40)$	$0.10776(16)$	$1.11(6)$

$$
{ }^{a} B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{\mathbf{i}} \cdot \mathbf{a}_{\mathbf{j}} .
$$

the NbS_{4} and $\mathrm{Cu}(1) \mathrm{S}_{4}$ tetrahedra edge share along a (Fig. 3). This sharing alternates Nb and Cu atoms, as was found in $\mathrm{K}_{2} \mathrm{CuNbSe}_{4}$ (2). As a result of this edge-sharing, the $\mathrm{Cu}(1) \mathrm{S}_{4}$ and $\mathrm{Cu}(2) \mathrm{S}_{4}$ tetrahedra cornershare. The $\mathrm{Cu}(1), \mathrm{Cu}(2), \mathrm{S}(1)$, and $\mathrm{S}(2)$ atoms thus form eight-member rings, with $\mathrm{Cu}(1)-\mathrm{S}-\mathrm{Cu}(2)$ angles ranging from $109.73(8)^{\circ}$ to $110.76(9)^{\circ}$. Figure 3 b shows a polyhedral representation of the anionic chains.

Table III lists selected distances and angles in $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}$, while Table IV com-

Fig. 3. (a) View of the anionic chain ${ }_{x}^{1}\left[\mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}^{3-}\right]$ down [001]. (b) Polyhedral representation of the structure of $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}$ down [001].
pares metrical data among related structures. The $\mathrm{Cu}-\mathrm{S}$ distances in the present structure range narrowly from 2.333(2) to $2.360(2) \AA$, comparing well with those in $\alpha-$ and $\beta-\left[\mathrm{CuS}_{4}\right]_{n}^{n-}(\mathrm{Cu}-\mathrm{S}, 2.298(4)-2.432(4)$ $\AA(8))$ and that in $\mathrm{Cu}_{3} \mathrm{VS}_{4}(2.285(14) \AA(9))$. The $\mathrm{Nb}-\mathrm{Cu}$ distances of $2.772(2), 2.777(2)$, and 2.781 (1) \AA are shorter than the corresponding distances in $\mathrm{K}_{2} \mathrm{CuNbSe}_{4}$ (2.873(1) $\AA(2))$ and in $\mathrm{KCu}_{2} \mathrm{NbSe}_{4}(2.831(1)-2.833(4)$ \AA (4)), because of the substitution of S for Se. The $\mathrm{Nb}-\mathrm{S}$ distances range from 2.264(2) to 2.307(2) \AA and are comparable to those in $\mathrm{K}_{3} \mathrm{NbS}_{4}(2.241(8)-2.257(8) \AA$ (10)). In transition-metal sulfides or selenides Nb atoms are most often found in trigonal prismatic coordination, as in NbS_{2} (11), most binary chalcogenides (12), the incommensurate double-layer structures $(M S)_{n} T S_{2}, n=1.08-1.19(M=\mathrm{Sn}, \mathrm{Pb}$, Bi , rare earth elements; $T=\mathrm{Nb}, \mathrm{Ta}$) (13-15), and $\mathrm{Nb}_{2} \mathrm{Pd}_{3} \mathrm{Se}_{8}$ (16), or in polyhedral coordination, as in $\mathrm{Nb}_{4} \mathrm{Se}_{22}^{6-}$ (17) and $\mathrm{K}_{3} \mathrm{CuNb}_{2} \mathrm{Se}_{12}$ (2). While Nb is found in tetrahedral coordination in the $M Q_{4}^{3-}$ anions ($M=\mathrm{Nb}, \mathrm{Ta} ; Q=\mathrm{S}$, Se) (10 , 18) as well as in $\mathrm{Ba}_{6}\left(\mathrm{NbS}_{4}\right)\left(\mathrm{NbS}_{3} \mathrm{O}\right)_{3}(19)$, tetrahedral coordination of Nb seems unusually prevalent in the $\mathrm{K} / \mathrm{Cu} / \mathrm{Nb} / Q$ systems $(2-4,20)$. The two crystallographi-

TABLE III
Selected Distances (\AA) and Angles (deg) for $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}$

$\mathrm{Nb}-\mathrm{Cu}(1)$	$2.781(1)$	$\mathrm{K}(1)-\mathrm{S}(1)$	$3.577(3)$
$\mathrm{Nb}-\mathrm{Cu}(2)$	$2.777(2)$	$\mathrm{K}(1)-\mathrm{S}(3)^{\prime}$	$3.296(3)$
$\mathrm{Nb}-\mathrm{Cu}(2)^{\prime}$	$2.772(2)$	$\mathrm{K}(1)-\mathrm{S}(3)$	$3.326(3)$
$\mathrm{Cu}(1)-\mathrm{Cu}(2)$	$3.871(2)$	$\mathrm{K}(1)-\mathrm{S}(3)$	$3.352(3)$
$\mathrm{Cu}(1)-\mathrm{Cu}(2)^{\prime}$	$3.841(2)$	$\mathrm{K}(1)-\mathrm{S}(4)$	$3.499(3)$
$\mathrm{Nb}-\mathrm{S}(1)$	$2.307(2)$	$\mathrm{K}(1)-\mathrm{S}(4)$	$3.569(3)$
$\mathrm{Nb}-\mathrm{S}(2)$	$2.307(2)$	$\mathrm{K}(1)-\mathrm{S}(4)$	$3.180(3)$
$\mathrm{Nb}-\mathrm{S}(3)$	$2.286(2)$	$\mathrm{K}(2)-2 \mathrm{~S}(1)$	$3.426(2)$
$\mathrm{Nb}-\mathrm{S}(4)$	$2.264(2)$	$\mathrm{K}(2)-2 \mathrm{~S}(2)$	$3.306(2)$
$\mathrm{Cu}(1)-2 \mathrm{~S}(1)$	$2.351(2)$	$\mathrm{K}(2)-2 \mathrm{~S}(2)$	$3.470(2)$
$\mathrm{Cu}(1)-2 \mathrm{~S}(2)$	$2.345(2)$	$\mathrm{K}(2)-2 \mathrm{~S}(3)$	$3.264(2)$
$\mathrm{Cu}(2)-\mathrm{S}(1)$	$2.346(2)$	$\mathrm{S}(1)-\mathrm{Nb}-\mathrm{S}(2)$	$107.98(7)$
$\mathrm{Cu}(2)-\mathrm{S}(2)$	$2.360(2)$	$\mathrm{S}(3)-\mathrm{Nb}-\mathrm{S}(1)$	$108.26(8)$
$\mathrm{Cu}(2)-\mathrm{S}(3)$	$2.349(2)$	$\mathrm{S}(3)-\mathrm{Nb}-\mathrm{S}(2)$	$109.55(7)$
$\mathrm{Cu}(2)-\mathrm{S}(4)$	$2.333(2)$	$\mathrm{S}(4)-\mathrm{Nb}-\mathrm{S}(1)$	$112.27(7)$
$\mathrm{S}(1) \cdots \mathrm{S}(1)$	$3.956(4)$	$\mathrm{S}(4)-\mathrm{Nb}-\mathrm{S}(2)$	$108.32(8)$
$\mathrm{S}(1) \cdots \mathrm{S}(2)$	$3.732(3)$	$\mathrm{S}(4)-\mathrm{Nb}-\mathrm{S}(3)$	$110.40(8)$
$\mathrm{S}(1) \cdots \mathrm{S}(2)$	$3.858(3)$	$\mathrm{S}(1)-\mathrm{Cu}(1)-\mathrm{S}(1)$	$114.54(13)$
$\mathrm{S}(1) \cdots \mathrm{S}(2)$	$3.979(3)$	$2 \mathrm{~S}(1)-\mathrm{Cu}(1)-\mathrm{S}(2)$	$105.27(7)$
$\mathrm{S}(1) \cdots \mathrm{S}(3)$	$3.722(3)$	$2 \mathrm{~S}(1)-\mathrm{Cu}(1)-\mathrm{S}(2)$	$110.47(7)$
$\mathrm{S}(1) \cdots \mathrm{S}(3)$	$3.878(3)$	$\mathrm{S}(2)-\mathrm{Cu}(1)-\mathrm{S}(2)$	$110.91(13)$
$\mathrm{S}(1) \cdots \mathrm{S}(4)$	$3.796(3)$	$\mathrm{S}(1)-\mathrm{Cu}(2)-\mathrm{S}(2)$	$115.47(9)$
$\mathrm{S}(1) \cdots \mathrm{S}(4)$	$3.955(3)$	$\mathrm{S}(1)-\mathrm{Cu}(2)-\mathrm{S}(3)$	$104.89(9)$
$\mathrm{S}(2) \cdots \mathrm{S}(2)$	$3.862(4)$	$\mathrm{S}(3)-\mathrm{Cu}(2)-\mathrm{S}(2)$	$109.94(9)$
$\mathrm{S}(2) \cdots \mathrm{S}(2)$	$3.899(4)$	$\mathrm{S}(4)-\mathrm{Cu}(2)-\mathrm{S}(1)$	$115.40(9)$
$\mathrm{S}(2) \cdots \mathrm{S}(3)$	$3.752(3)$	$\mathrm{S}(4)-\mathrm{Cu}(2)-\mathrm{S}(2)$	$104.30(9)$
$\mathrm{S}(2) \cdots \mathrm{S}(3)$	$3.856(3)$	$\mathrm{S}(4)-\mathrm{Cu}(2)-\mathrm{S}(3)$	$106.54(9)$
$\mathrm{S}(2) \cdots \mathrm{S}(4)$	$3.705(3)$	$\mathrm{Cu}(2)-\mathrm{Nb}-\mathrm{Cu}(1)$	$88.40(5)$
$\mathrm{S}(3) \cdots \mathrm{S}(4)$	$3.736(3)$	$\mathrm{Cu}(2)-\mathrm{S}(1)-\mathrm{Cu(1)}$	$109.73(8)$
$\mathrm{S}(3) \cdots \mathrm{S}(4)$	$3.750(3)$	$\mathrm{Cu(2)-S(2)-Cu(1)}$	$110.76(9)$
$\mathrm{S}(3) \cdots \mathrm{S}(4)$	$3.752(3)$		
$\mathrm{S}(4) \cdots \mathrm{S}(4)$	$3.599(4)$		

cally distinct Cu atoms show similar distortions from tetrahedral symmetry with $\mathrm{S}-\mathrm{Cu}(1)-\mathrm{S}$ angles ranging from $105.27(7)^{\circ}$ to $114.54(13)^{\circ}$ and $\mathrm{S}-\mathrm{Cu}(2)-\mathrm{S}$ angles ranging from $104.30(9)^{\circ}$ to $115.47(9)^{\circ}$, while the NbS_{4} tetrahedra are somewhat more regular $\left(\left\langle\mathrm{S}-\mathrm{Nb}-\mathrm{S}=107.98(7)^{\circ}-112.27(7)^{\circ}\right)\right.$.

There are four crystallographically distinct S atoms. Atoms $S(3)$ and $S(4)$ are connected to the Nb and $\mathrm{Cu}(2)$ atoms; atoms $S(1)$ and $S(2)$ are connected to all three metals. There are two crystallographically distinct K atoms. If we choose $4.0 \AA$ as an
upper limit for $\mathrm{K}-\mathrm{S}$ interactions then atom $K(1)$ is seven coordinate while atom $K(2)$ is eight coordinate.

Since there are no close $S \cdots S$ interactions formal oxidation states of $\mathrm{K}(\mathrm{I}), \mathrm{Cu}(\mathrm{I})$, $\mathrm{Nb}(\mathrm{V})$, and $S(-\mathrm{II})$ may be assigned. This assignment is consistent with the fact that the resistivity of $\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}$ is greater than $10^{5} \mathrm{~m} \Omega \mathrm{~cm}$ at room temperature.

Acknowledgments

This research was supported by the U.S. National Science Foundation (Grant DMR88-13623). This work

TABLE IV
Comparative Distances (\AA) in Related $M Q_{4}$ Tetrahedra ($M=\mathrm{Cu}, \mathrm{Nb} ; Q=\mathrm{S}$, Se)

Compound	$\mathrm{Cu}-Q$	$\mathrm{Nb}-Q$	$\mathrm{Nb}-\mathrm{Cu}$
$\alpha-$ and $\beta-\mathrm{KCuS}_{4}$	$2.298(4)-2.432(4)$		
$\mathrm{Cu}_{3} \mathrm{VS}_{4}$	$2.285(14)$		Ref.
$\mathrm{K}_{3} \mathrm{NbS}_{4}$		$2.241(8)-2.257(8)$	(8)
$\mathrm{Ba}_{6}\left(\mathrm{NbS}_{4}\right)\left(\mathrm{NbS}_{3} \mathrm{O}\right)_{3}$		$2.238(5)-2.284(5)$	(9)
$\mathrm{KCu}_{3} \mathrm{~S}_{2}$	$2.24-2.86$		(10)
$\mathrm{KCu}_{4} \mathrm{~S}_{3}$	$2.312(2)-2.451(1)$		(19)
$\left[\mathrm{NH}_{4}\right]\left[\mathrm{CuMoS}{ }_{4}\right]$	$2.283(4)$		(21)
$\mathrm{CuAsS}^{\mathrm{TlCu} \mathrm{Ce}_{4}}$	$2.30(1)-2.34(1)$		(22)
$\mathrm{TlCu}_{5} \mathrm{Se}_{3}$	$2.377(5)-2.658(3)$		(23)
$\mathrm{K}_{2} \mathrm{CuNbSe}_{4}$	$2.389(2)-2.629(3)$		(24)
$\mathrm{KCu}_{2} \mathrm{NbSe}_{4}$	$2.457(1)$	$2.413(1)$	(25)
$\mathrm{K}_{3} \mathrm{Cu}_{3} \mathrm{Nb}_{2} \mathrm{~S}_{8}$	$2.427(2)-2.440(4)$	$2.392(3)-2.452(3)$	$2.831(1)-2.833(4)$

made use of Central Facilities supported by the Na tional Science Foundation through the Northwestern University Materials Research Center, Grant DMR8821571.

References

l. S. A. Sunshine, D. Kang, and J. A. Ibers, J. Am. Chem. Soc. 109, 6202 (1987).
2. Y.-J. Lu and J. A. Ibers, Inorg. Chem. 30, 3317 (1991).
3. Y.-J. Lu and J. A. Ibers, unpublished results.
4. Y.-J. Lu and J. A. Ibers, J. Solid State Chem. 94, 381 (1991).
5. See, for example: J. M. Waters and J. A. Ibers, Inorg. Chem. 16, 3273 (1977).
6. G. M. Sheldrick, in "Crystallographic Computing 3" (G. M. Sheldrick, C. Kruger, and R. Goddard, Eds.), pp. 175-189, Oxford Univ. Press, Oxford (1985).
7. J. de Meulenaer and H. Tompa, Acta Ciystallogr. 19, 1014 (1965).
8. M. G. Kanatzidis and Y. Park, J. Am. Chem. Soc. 111, 3767 (1989).
9. L. Pauling and R. Hultgren, Z. Kristallogr. 84, 204 (1933).
10. M. Latroche and J. A. Ibers, Inorg. Chem. 29, 1503 (1990).
11. F. Jellinek, Ark. Kemi 20, 447 (1963).
12. F. Jellinek, Int. Rev. Sci.:Inorg. Chem. Ser. One 5, 351 (1972).
13. S. Kuypers, J. Van Landuyt, and S. Amel-
inckx, J. Solid State Chem. 86, 212 (1990).
14. G. A. Wiegers, A. Meetsma, R. J. Haange, and J. L. De Boer, J. Solid State Chem. 89, 328 (1990).
15. A. Meerschaut, P. Rabu, and J. Rouxel, J. Solid State Chem. 78, 35 (1989).
16. D. A. Keszler and J. A. Ibers, J. Solid State Chem. 52, 73 (1984).
17. S. Schreiner, L. E. Aleandri, D. Kang, and J. A. Ibers, Inorg. Chem. 28, 392 (1989).
18. H. Yun, C. R. Randall, and J. A. Ibers, J. Solid State Chem. 76, 109 (1988).
19. L. E. Rendon-Diazmiron, C. F. Campana, and H. Steinfink, J. Solid State Chem. 47, 322 (1983).
20. P. M. Keane, Y.-J. Lu, and J. A. Ibers, Acc. Chem. Res. 24, 223 (1991).
21. C. Burschka and W. Bronger, Z. Naturforsch. 32B, 11 (1977).
22. D. B. Brown, J. A. Zubieta, P. A. Vella, J. T. Wrobleski, T. Watt, W. E. Hatfield, and P. Day, Inorg. Chem. 19, 1945 (1980).
23. W. Bensch, G. Stauber-Reichmuth, A. Reller, and H. R. Oswald, Rev. Chim. Miner. 24, 503 (1987).
24. D. C. Craig and N. C. Stephenson, Acta Crystallogr.19, 543 (1965).
25. L. Eriksson, P.-E. Werner, R. Berger, and A. Meerschaut, J. Solid State Chem. 90, 61 (1991).
26. R. Berger, L. Eriksson, and A. Meerschaut, J. Solid State Chem. 87, 283 (1990).

[^0]: ${ }^{1}$ See NAPS document No. 04922 for 10 pages of supplementary materials. Order from ASIS/NAPS, Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, NY 10163. Remit in advance $\$ 4.00$ for microfiche copy or for photocopy, $\$ 7.75$. All orders must be prepaid. Institutions and Organizations may order by purchase order. However, there is a billing

